Юный радиолюбитель [7-изд] - Виктор Борисов
Шрифт:
Интервал:
Закладка:
Необходимое сопротивление резистора можно найти по другой знакомой тебе формуле R = U/I, где R — искомое сопротивление добавочного резистора, Ом; U — напряжение, которое необходимо погасить, В; I — ток в цепи, А. Для нашего примера (рис. 53) сопротивление добавочного резистора равно: R = U/I = 2/0,075 ~= 27 Ом. Изменяя сопротивление, можно уменьшать или увеличивать напряжение, которое падает на добавочном резисторе, и таким образом регулировать ток в цепи. Но добавочный резистор R в такой цепи может быть переменным, т. е. резистором, сопротивление которого можно изменять (рис. 54). В этом случае с помощью движка резистора можно плавно изменять напряжение, подводимое к нагрузке Н, а значит, плавно регулировать ток, протекающий через эту нагрузку. Включенный таким образом переменный резистор называют реостатом. С помощью реостатов регулируют токи в цепях приемников и усилителей. Во многих кинотеатрах реостаты используют для плавного гашения света в зрительном зале.
Рис. 54. Регулирование тока в цепи помощью резистора
Есть, однако, и другой способ подключения нагрузки к источнику тока с избыточным напряжением — тоже с помощью переменного резистора, но включенного потенциометром, т. е. делителем напряжения, как показано на рис. 55. Здесь R1 — резистор, включенный потенциометром, a R2 — нагрузка, которой может быть та же лампочка накаливания или какой-то другой прибор.
Рис. 55. Регулирование напряжения на нагрузке R2 цепи с помощью переменного резистора R1
На резисторе R1 происходит падение напряжения источника тока, которое частично или полностью может быть подано к нагрузке R2. Когда движок резистора находится в крайнем нижнем положении, к нагрузке напряжение вообще не подается (если это лампочка, она гореть не будет). По мере перемещения движка резистора вверх мы будем подавать все большее напряжение к нагрузке R2 (если это лампочка, ее нить будет накаливаться). Когда же движок резистора R1 окажется в крайнем верхнем положении, к нагрузке R2 будет подано все напряжение источника тока (если R2 — лампочка карманного фонаря, а напряжение источника тока большое, нить лампочки перегорит). Можно опытным путем найти такое положение движка переменного резистора, при котором к нагрузке будет подано необходимое ей напряжение.
Переменные резисторы, включаемые потенциометрами, широко используют для регулирования громкости в приемниках и усилителях 3Ч. Резистор может быть непосредственно подключен параллельно нагрузке. В таком случае ток на этом участке цепи разветвляется и идет двумя параллельными путями: через добавочный резистор и основную нагрузку. Наибольший ток будет в ветви с наименьшим сопротивлением. Сумма же токов обеих ветвей будет равна току, расходуемому на питание внешней цепи.
К параллельному соединению прибегают в тех случаях, когда надо ограничить ток не во всей цепи, как при последовательном включении добавочного резистора, а только в каком-то участке ее. Добавочные резисторы подключают, например, параллельно миллиамперметрам, чтобы ими можно было измерять большие токи. Такие резисторы называют шунтирующими или шунтами. Слово шунт означает «ответвление».
ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕВ цепи переменного тока на значение тока влияет не только сопротивление проводника, включенного в цепь, но и его индуктивность. Поэтому в цепях переменного тока различают так называемое омическое или активное сопротивление, определяемое свойствами материала проводника, и индуктивное сопротивление, определяемое индуктивностью проводника. Прямой проводник обладает сравнительно небольшой индуктивностью. Но если этот проводник свернуть в катушку, его индуктивность увеличится. При этом увеличится и сопротивление, оказываемое им переменному току, — ток в цепи уменьшится. С увеличением частоты тока индуктивное сопротивление катушки тоже увеличивается.
Запомни: сопротивление катушки индуктивности переменному току возрастает с увеличением ее индуктивности и частоты проходящего по ней тока.
Это свойство катушки используют в различных цепях приемников, когда требуется ограничить ток высокой частоты или выделить колебания высокой частоты, в выпрямителях переменного тока и во многих других случаях, с которыми тебе придется постоянно сталкиваться на практике.
Единицей индуктивности является генри (Гн). Индуктивностью 1 Гн обладает такая катушка, у которой при изменении тока в ней на 1 А в течение 1 с развивается ЭДС самоиндукции, равная 1 В. Этой единицей пользуются для определения индуктивности катушек, которые включают в цепи токов звуковой частоты. Индуктивность катушек, используемых в колебательных контурах, измеряют в тысячных долях генри, называемых миллигенри (мГн), или еще в тысячу раз меньшей единицей — микрогенри (мкГн).
МОЩНОСТЬ И РАБОТА ТОКАНа нагрев нити накала электрической или электронной лампы, электропаяльника, электроплитки или иного прибора затрачивается некоторое количество электроэнергии. Эту энергию, отдаваемую источником тока (или получаемую от него нагрузкой) в течение 1 с, называют мощностью тока. За единицу мощности тока принят ватт (Вт). Ватт — это мощность, которую развивает постоянный ток 1 А при напряжении 1 В. В формулах мощность тока обозначают латинской буквой Р (читается «пэ»). Электрическую мощность в ваттах получают умножением напряжения в вольтах на ток в амперах, т. е. P = U·I.
Если, например, источник постоянного тока напряжением 4,5 В создает в цепи ток 0,1 А, то мощность тока будет: Р = U·I = 4,5·0,1 = 0,45 Вт. Пользуясь этой формулой, можно, например, подсчитать мощность, потребляемую лампочкой плоского карманного фонаря, если 3,5 В умножить на 0,28 А. Получим около 1 Вт.
Изменив эту формулу так: I = P/U, можно узнать ток, протекающий через электрический прибор, если известны потребляемая им мощность и подводимое к нему напряжение. Каков, например, ток, идущий через электрический паяльник, если известно, что при напряжении 220 В он потребляет мощность 40 Вт?
I = P/U = 40/220 ~= 0,18 А.
Если известны ток и сопротивление цепи, но неизвестно напряжение, мощность можно подсчитать по такой формуле: Р = I2R. Когда же известны напряжение, действующее в цепи, и сопротивление этой цени, то для подсчета мощности используют такую формулу:
Р = U2/R.
Но ватт — сравнительно небольшая единица мощности. Когда приходится иметь дело с электрическими устройствами, приборами или машинами, потребляющими токи в десятки, сотни ампер, используют единицу мощности киловатт (пишут кВт), равную 1000 Вт. Мощности электродвигателей заводских станков, например, могут составлять от нескольких единиц до десятков киловатт.
Количественный расход электроэнергии оценивают ватт-секундой, характеризующей единицу энергии — джоуль. Расход электроэнергии определяют умножением мощности, потребляемой прибором, на время его работы в секундах. Если, например, лампочка плоского электрического фонарика (ее мощность, как ты уже знаешь, около 1 Вт) горела 25 с, значит, расход энергии составил 25 ватт·секунд. Однако ватт·секунда — величина очень малая. Поэтому на практике используют более крупные единицы расхода электроэнергии: ватт·час, гектоватт·час и киловатт·час. Чтобы расход энергии был выражен в ватт·часах или киловатт·часах, нужно соответственно мощность в ваттах или киловаттах умножить на время в часах.
Если, например, прибор потребляет мощность 0,5 кВт в течение 2 ч, то расход энергии составит 0,5·2 = 1 кВт·ч; 1 кВт·ч энергии будет также израсходован, если цепь будет потреблять (или расходовать) мощность 2 кВт в течение получаса, 4 кВт в течение четверти часа и т. д. Электрический счетчик, установленный в доме или квартире, где ты живешь, учитывает расход электроэнергии в киловатт·часах. Умножив показания счетчика на стоимость 1 кВт·ч (4 коп.), ты узнаешь, на какую сумму израсходовано энергии за неделю, месяц.
При работе с гальваническими элементами или батареями говорят об их электрической емкости в ампер·часах, которая выражается произведением значения разрядного тока на длительность работы в часах. Начальная емкость батареи 3336Л, например 0,5 А·ч. Подсчитай: сколько времени будет батарея непрерывно работать, если разряжать ее током 0,28 А (ток лампочки фонаря)? Примерно один и три четверти часа. Если же эту батарею разряжать более интенсивно, например, током 0,5 А, она будет работать меньше 1 ч. Таким образом, зная емкость гальванического элемента или батареи и токи, потребляемые их нагрузками, можно подсчитать примерное время, в течение которого будут работать эти химические источники тока.